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ABSTRACT*

The first part of this thesis is concerned with the
mathematics of filtering in discrete time. Filters are de-
fined for the purposes of 1) condensing waveforms into im-

pulsive functions, 2) wave shaping, 3) noise suppression,
4) signal detection according to the criterion of maximum

signal-to-noise output at an instant, and 5) the same over
an interval. The behavior of the complex Fourier trans-
forms of some of these filters is considered and connec-
tion is made with the theory of orthogonal polynomials.
This leads to the possibility of a feed back representa-
tion of these filters.

In the second part, computational experiments are
described in which digital filters are applied to seismic
body waves to 1) try to determine whether the first arr-
val is up or down on a seismogram corrupted with micro-

seismic noise, 2) increase signal-to-noise ratio on seis-
mograzz'Rs where noise has almost obliterated signal, 3) as-

sign polarity to each of two seismic first motion wavelets
so they can be termed "same" or "opposite," 4) remove spec-

trum of seismometer from data, 5) investigate the time var-
ying spectral structure of underground nuclear shot seis-
mograms.

* Submitted to the Department of Geology and Geophysics on

January 14, 196,;. in partial fulfillment of the require-
ments for the degree of Master of Science at the Massa-
chusetts Institute of Technology
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INTRODUCTION

Although time is a continuous parameter it often
happens that observations are made at discrete time inter-
vals. Even when continuous observations are made, it is

often desirable to digitize them for computer processing.
This is strong reason to do some mathematics in discrete
time. An even stronger reason as we will see is that
things which are conceptually quite hard in continuous
time have analogues in discrete time which are easier to
understand.

Fortunately* in discrete time many general principles
can be observed with wavelets of very short time duration.
This enables us to consider some very simple examples before

launching off into the general theory. These simple examples,
however, will not forshadow the way in which we will connect
the theory of least squares filters with the general theory
of orthogonal polynomials.

We denote time functions bt with a subscript as the
time parameter. When the time function has finite time
duration.we may denote It as b or (bo0 ,b,...,bn). Any
time runction which has finite energy is called a wavelet.

The memory functions of filterq too, are sometimes called
wavelets.

I. Introductory Examples
We introduce the main topics by means of some

examples. One is given in discrete time an input series
(bob,) of length (time duration) two, a filter (ao,a2)
with an impulse response of length two, and the output
reaulting from convolution to be (cosc 1 c2 ) of length

necessarily three. The t is determined from the I and the
b by convolution as is the usual procedure for linear
filters, i.e.

C ~C, 42 b.l +

Ca
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or

1) Spiking filter
To design a spiking rilter one would choose (ao, a1 )

so that • comes out as closely as possible to a spike, i.e.

either (1,0,0) or (O,1,0) or (O,0,1).

2) Wave shaper

To design a wave shaping filter one would choose
(ao 1 a 1 ) so that t comes out as closely as possible to some

prescribed waveform (do, dI, d) •

3) A matched filter
To design a matched filter one would choose (a0 ,a 1 )

so that c1 comes out as large as possible while making the
unit energy constraint (qe. -|) on the filter. In this

problem one doesn't care what co an d 02 turn out to be.

4) M•axmum energy sum filter
To design a maximum energy sun filter one would

choose (ao,a 1 ) so that the energy output (¢*&g.C, Ca )
comes out as large as possible while making the unit energy
constraint (filt-er-- |) on the filter.

A quick sketch of the solutions to these problems is
as follows: Since the spiking filter is a special case of

the wave shaper it will be sufficient to work out the

solution for the wave shaper. Requiring S to be as close
as possible to o is equivalent to minimizing the squared

distance between them

choose " (a.-,al) so that,,) th enry upu 4 -P I'+ C&
come out•. a.s* large. as- possibl whil making th nteeg
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Setting the partial derivatives with respect to ao and a.
equal to zero we get the simultaneous set for a.

(l b,g1+4 . +(b. ) ", b*J b+ ,

(bb+a +(boa J13)a, 6vhd. + bd.1

We mention the particular case d-(l,O,O) called the

zero delay spiking filter. The solution of the simultaneous
set is

Recalling that subscripts are the time variable we now

consider the Fourier transform of the solution

F..(c.) . (ao+ ,.+ b, - e

The only zero of this complex function is in the upper

half of the complex frequency planes a fact which will be
shown true for all zero delay spiking filters. This has
considerable importance in feedback systems and In some
other connections to be discussed.

The solution to the matched filter problem posed in
3) above is most easily done by means of Lagrange multipliers.
We Wish to maximize c1 under the constraint
Lagrange's method is then to maximize... [.,-

Setting the derivatives with respect to ao and a, equal to
zero, one gets
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Thus the filter (ao0 a1 ) is simply the signal input time-
reversed and multiplied by a scale factor.

The solution to the maximum energy sum problem 4)
is somewhat like the matched filter. Again one uses
Lagranges method and maximizes

by setting derivatives with respect to the components of a
equal zero. This results in the equations

16Ib isb I LI ado a

which is the standard eigenvector (a), eigenvalue (-)
problem. The two solutions to this problem are

,a and

It is notable that the fourier transform of these functions

have zeros on the real frequency axis. This will also
happen with longer filters.

II. Spiking Filters
A. Normal Equations

In the first introductory example we considered the
problem of building a two term filter which would condense
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a two term input isito a spike function. Now we would like

to build an *#1 term filter to condense an n+1 term input

Into a spike.

A data wavelet in given by b-(boabia,,06bn)p We

plan to construct a filter a - (a 0 ,al.,,ea_), Filtering

is defined in this way: When data b goes into a filter -a,

an output wavelet I is produced according to the following

matrix multiplication.

lo bo 7.~

**b,

This operation is often called complete transient convolution.

This is more loosely written as

C! 6;~-i CL (11-2)

Here a small amount of confusion can arise about the limits

of the suutma t.on because negative subscripts may appear

within the summation. What is meant is that one should

consider the terms "off-the-ends" of the wavelets to be zero.

With this consideration we might write the limits of the

summation as minus to plus infinity. The artifice of using

infinite limits on the sums turns out to avoid some need-

lessly cumbersome notation.

Now we Introduce another wavelet d which will have

the same number of components as o. We call d the desired
output of the filter. We saw thatl is the actual output.

The actual output S was seen to be a function of the input

band the filter 1. The problem now Is to determine a so
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that I and d are very much alike. Specifically we will choose
a so that the difference vectorIt-1has minimum length
squared (in n+n*l dimensional space). In other words we
are minimizing

36 40

m- (11-3)
Lee

by varying the components of Z. Inserting the expression
for * in terms of I andt we get

(;b. - - (iI- )

This fundtion of mnl variables will be minimized if its
partial derivative with respect to each of (ao,a 1 ,...,am)
equals zero. Setting derivatives with respect to aA equal
zero we get an expression for msl equations

0 6- 4• c•-,. - (11-5)

where one equation is implied for each value of j(0A_4 On).
These are called normal equations because they say

that the error vector, the quantity in brackets, will be
normal or perpendicular to the space spanned by the vector
set bi-, (column vectors in the matrix of equation i-1).
We bring the equations into standard form by bringing

the homogeneous part (the part depending on A) to the left

side and the inhomogeneous part to the right

•_bL-,( -* a} = • .,(11-6)
€,.@ bsO

In matrix form the normal equations become

("1-7)
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LCL

which can be abbreviated

and whice ,is identically equal to

ITN

BT(D), = (11-8)and whi <,.'i idenicll equal.to

The matrix BiB can be written as

o~r, r,.. r -"

LN. rd

where

Lf j)'n

This r•n 1 called the unnormalized transient
autocorrolation of ;.
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We list three special cases of these equations.

1. Zero delay inverse filter - This is when -

2. Spiking filter - This is when the impulse is

chosen any where in t. It has been frequently observed

.in practice that putting the impulse near the middle of

results in an actual output t which resembles I more
4 d#

Ulosely than if d had been chosen as in the zero delay case.

3. Waveshaping filter - This is when I is not chosen

to be an impulse at all, but is chosen to be some arbitrary

wavelet. The filter a then tries to convert the wavelet

b into the wavelet

It is worth noticing that the homogeneous part of
the normal equations (11-9) depends only upon the autocor-

relation of the input- band not on b itself. If the desired
output of the filter is an impulse with no delay (a - (1,0,

0,...,0)) then the inhomogeneous part becomes the column

vector

Now in this case we see that the waveform b does not enter

the inhomogeneous part either, except for the magnitude of

bo. Inspection of the normal equations shows that this

magnitude will not affect the waveform of the filterl except

as a scale factor.

Thus the normal equations in this special case (zero

delay inverse filter) depend upon the signal waveform, but

only through its autocorrelation. Since autocorrelations

contain no phase information it would be a curious point as

to what the phase spectrum will be of the solution Z. We
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will study this later and come to the curious conclusion
that the phase spectrum is such that as much as possible of
the energy In the waveforml is cramped up as close as
possible to ao, This is called the property of minimum
phase delay of the waveform a.

To fix ideas we now give an example of the deter-
pdnation of a zero delay inverse wavelet. Suppose that
the signal we are dealing with is the waveform b-(2,l).
We want to design a three-term filter U-(ao,al,a 2 ). The

desired output must then be n+m+l - 1+2+1 terms long and
is I- (1,0,0,0). From (II-10) ro - 5, rI = 2, r 2 = 0.

The normal equations are

and the solution isa - (42,-20,8)/85. To see how good the

filter is we compare:

actual output I - (84,2,-4,8)/85
desired output a - (1,0,0,0)

B. Minimum Phase
Discussions of minimum phase in the literature are

mostly in terms of continuous time. Here we wish to develop
its properties from the point of view of digital filters
which are not so well known. We begin by considering an
autocorrelation function of the type of equation (II-11)

where

- . e. . . , (11-13)

We wonder what functions b might have this autocorrelation.
-0

After we have found the class of functions b that have this

autocorrelation we can enquire which one has its energy as
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close as possible to bo and is, therefore, the minimum phase
delay wavelet. One thing which we know to begin with is
that more than one wavelet b may have autocorrelation r
(for example; the time reversed waveform, the negative
waveform, and the time reverse of the negative waveform).

We begin by spectral considerations. Let F denote
Fourier transform. It is commonly known that the energy
density spectrum of the wavelet may be expressed in two
equal ways:

Thus the problem is to ,factor Fr(co) into Fb()) and Fb(w).
Then we can simply take the inverse transform of Fb(tJ)
to get the waveform •. The Fourier transform of " is
simply

1-0 +Apt 1(11-15)

and letting z- C. we get

-% .,%1
0. " + (11-16)

We notice that the spectrum has been represented as a poly-
nomial in z. The usual procedure in factoring a polynomial
is to find its zeros. Since rkmr.k, we notice that Fr(Z) is
unchanged if we replace z by z- . Thus if Fr(Zo) is zero
then Fr(l/to) will also be zero. Thus for every zero zo,
Zo'0 is also a zero. Also since the coefficients of the
polynomial are real the zeros are either real or they occur
in conjugate pairs. Thus if zo is a zero then-Z is a zero.
Most of the zeros will probably occur then in groups of
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four such as

Some of the zeros may occur in groups of two such as

One might wonder about the case

maiis are f Its+ ordej.)
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where there are two single zeros on the unit circla. It
turns out that this can't happen. What we are plotting

here is possible locations of zeros of energy density

spectra like equation (11-16). When z0 ip on the unit

circle 1)0 is real by the relation Z- 4 Thus we

are talking about the spectrum at some real frequency. A

function like the following

FW

which has a single zero at WO is not an energy density
spectrum because it is not positive for all frequencies.

More generally, energy density spectra cannot have zeros

of odd multiplicity on the unit circle in the .jplane.
We now know that for every zergie: = 7"' of the

energy spectral polynomial that e'go is another zero.

After we factor the spectral polynomial we will be able

to write the spectrum as

or in terms of CO

A C"') a C(a') (11-19)
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Now if we show A-c•giB(W) then we have factored

the spectrum Fr((A) into the desired conjugate parts

Fb (W)Fb(W).
But both are polynomials in e of order n and

both A(&M) and B(WO) have the same zeros. Thus they must

be the same function except for a constant multjplicative

factor. This can be absorbed from the factor rnn it

This is called factoring the spectrum.

We notice that the factorization could have been

done in many ways depending on which of the pair of zeros

is put into Fb(&) (the other one then going into Fb(W)).

Normally, there would be 2 n different ways of doing this,

the exception being the degenerate case when zeros occur

with multiplicity greater than unity. Then there would

be fewer than 2 n wavelets with the same energy density.

One of these possible factorizations is of parti-

cular signifigance. The factoring is done so that all of

the zeros which are outside of the unit circle are put

into Fb(w) and the opposite member of each pair which is

inside the circle then goes into Fb(W). In this case the

wavelet must be real because each root is either real or

it occurs with its complex conjugate.

Combining all complex roots z with their complex

conJugates,+iP ) (ka+-A)we write for the wavelet's

transform

F. (!1)
Ohrr I &Vii Otethi 98ses ou~tsi~de 14aiit cirdeI

Taking the inverse transformiand letting "*" denote con-

volution

1 The case with zeros exactly on the unit circle corresponds
to a spectrum which is exactly zero for some real W . In
any physical case one can usually perturb the spectrum slightly
to avoid this difficulty.
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(11-19.2)

Thus we have a string of convolutions of many wave-
lets each of either 2 or 3 instants duration. Since all
of the roots were chosen outside the unit circle we have

an>d an0d " + i>1
This means that in each of the wavelets the first term is
larger in absolute value than th, last. Thus in the
convolution of all terms, the energy will be compacted
toward the beginning. If any one of the zeros had been

chosen instead, from inside the circle, then the energy
would be spread further out on the time axis.

We will now prove that

" Z of Total Eguiply ir Intorval OUT
I•0,

Emd of Wavelet------- (time)T
the summed energy from 0 to any time t for the minimum
phase wavelet is greater or equal to that of anyother wave-

let with the same spectrum.
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Consider a two term wavelet (b,s) "bigger," "smaller,"

with its zero outside the circle. Convolve it into an

arbitrary wavelet - (POPl,...IPk)e The result is

'PI.. + ... , sFA)

If instead we had chosen the reversed wavelet (s,b) with

its zero inside the circle, we would get-

pn s=s , s op, .bp., sr.,* ...

Then we consider the partial energy from time = 0 up

to time - T and tabulate the difference between Pin and ut

Tr~ -.- 1
Tu I ~- (s•_. ' ( se1+P,)T- 0 (b La) (Sp)36 -51)6F

T- I (br.) (bP. Sr.) •• - (s. S (sP.i-bf.)'=

b- CS 1••- (6-

7T.•, (6,A).C(sP4) -..(se•)•(bP•)' -_ 0
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Thus we conclude that for any time T the wavelet Pout

with the zero outside the unit circle contains (b2 -s 2 )p

more energy in the interval O tVT than the wavelet -*Pin

with the zero inside. The exception is at the last lag
when they have both put out the same total energy. It is
not difficult to show that the above statements would still

be true if components of vectors were complex and squaring
were replaced with multiplying by conjugates.

To prove the minimum phase wavelet delays energy the
least, one imagines that the convolution (11-19.2) had
been done so that k zeros were outside the circle and
n-k were inside. We have just shown that if one of the

zeros from inside were replaced with an outside zero, that

the new convolution would have less energy delay. This

argument is repeated until all zeros are outside.

Finally, we show that zero delay spiking wavelets

determined by least squares will have all their zeros out-

side the unit circle.

We recall the following from previous portions of

this thesis:
1) The least-squares spiking wavelet is a wave-

let T which when convolved with a given wavelet-t tries
to give an output equal in the least squares sense to
d (do0 ,O,O...,O). Specifically, ' is chosen to minimize

2) We recall that the choice of size of d0 affects
the solution vectorl only as a scale factor. Thus do

could always be chosen so that a. - 1. We note that a

scale factor has no effect on a per cent total energy

graph.

3) We recall that if a zero of a wavelet is removed

from inside the circle and replaced by the conjugate inverse
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zero outside, that the modified wavelet has a per cent

total energy curve which lies above that of the original

wavelet. The per cent total energy curves may touch one
another at points except for at time t-O where the curve
with fewest zeros inside the circle is definitely above.

We can view the normal equations as minimizing the

energy in a convolve b after time t-O subject to the con-

straint that the energy at twO be equal to (a 0 b0 ) 2 ,(b 0 ) 2 .

That is, we could view the normal equations as minimizing

the per cent energy after t-O. But this is the same as

maximizing the per cent energy at t=0. But if the per-

centage energy at t-O is to be maximized for the wavelet

I"convolvet, then there must be as few as possible zeros

inside the circle. This happens if I has none inside and

hence is minimum phase.

C. Connection of Least Squares Inverse Filter with Orthogonal

Polynomials
Given an energy density function

one could take that function and use it as a weighting
function to define a set of orthogonal polynomials. We

choose the interval of orthogonality to be the unit circle

in the z plane which corresponds to the real frequency

axis fromu--t to +O in the& plane. Thus we would con-

struct a set of polynomials fk

fe= 0#,

so that

fr -..

isine~
(3r--10



on the real axis. Expressing the same thing with complex

polynomials on the unit circle one gets

A tat = 1 (11-21)

We illustrate the construction of these polynomials

in such a way that it will be seen to be equivalent to the

least squares normal equations. Consider the construction

of f 2 " Let Cf f.nm) denote the dot product defined by2* by

equation (11-20). The vector f2 is of order two say

f• - C. 6 C, +e Ch. I"

and must satisfy the orthogonality conditionsLf,6.I[f% 1f',] : o 0i•

Lt f, z 0 (11-22)

[f16fl :
Since f 2 perpendicular to any linear combination of

f and f,, it is perpendicular to any polynomial of order

less than 2. Thus the orthogonality relations could be

written
[•,,a]: 0

Lf0 (11-23)

This set of orthogonality requirements (11-23) can

be written out in full as

C, ,] C. + [-tol C., + E 0 .

,, 1 JC. + [, , 21 C, + r , 7.61.3 0 (11-24)
CO +(+ -jc)
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We now examine the coefficients in this simultaneous

set. Consider 1ZnZm]

Hence the orthogonality relations (11-24) can be

written

, , = [ o (11-25)

This is almost exactly the same as the normal equa-

tions (11-7) for the least squares inverse filter. The

only differenbes are a scale factor in the inhomogeneous

part and "time reversal" of the solution. But this will

not affect the waveform " except by a scale factor and

time reversal'.

Thus we have shown the important result that follow-

ing two problems are equivalent:

1) Find polynomials which are orthogonal on the

unit circle with weight IV1L.)

2) Find least squares zero delay spiking filters

of different lengths for the spectrum i W)

This result is important because it allows us to
apply many results in the classic field of orthogonal
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polynomials to least squares filter theory.

One %pplication is to use the recurrence relation between

successive orthogonal polynomials to gendrate the filter of length

n+l from the filter of length n. This trick greatly facilitates computing

the solution of the normal equations. The relationship for getting

fm+l (Z) from fm(Z) is the recurrence relation (Geronimus 1960)

C'Vfo f( Af +O(M, 1*MfM(-&) (11-26)

where-the two side conditions used to get + 0 and • -

are first

S+ Ofmmin # + ~) + n+ (11-27)

and second

-+ (1.. , 1 W) ( 1-.28)

The choice of sign for the square root is immaterial as far as

polynomial orthogonality is concerned. It is customary to choose it

so thatdlý,,1 , the first term in the spiking wavelet is positive. The

recurrence relation can be started off by choosing any value whatever

for0a0. The result is just a scale factor in the inverse wavelet.

From equation (11-20) it in evident that the recurrence formula can be

started off at Opert = f been d

These relations appear to have first been derived by Szego (1939).
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Another readable account is Geronimus (1960). Levinson (1939) also

derived similar, but not identical relations for the filter problemr

although he does not mention any connection with orthogonal polynomials,

Levinson's scheme is even more useful than the polynomial recurrence

relations because it allows solving the normal equations for arbitrary

inhomogeneous part.

Another valuable result of the connection of filter and poly-

nomial theory is the following. All the zeros of all the polynomials

generated by the recurrence relation above are known to lie inside

the unit circle (Geronimus 1960). This means that the time reverse of

the associated filter is minimum phase. Because of this we can

invert the wavelet, i.e. take the inverse of its spectrum.

"I b +I.
48. " + tr".1 I + '..÷4. V:

Since the polynomial a(z) has no zeros inside the unit circle,

the infinite series b(z) converges at least up to and including the unit

circle. This means that the wavelet bk has finite energy and is mini-

mum phase. The waveletl has a spectrum which is in a least squares

sense* equal to I/4(i). The spectrum of the infinitely long wavelet b#

is exactly the inverse of the spectrum oftI. Hence we conclude that

the spectrum of is equal in a least squares sense to V(W). Thus

we have found a way to compute in a least squares sense the minimum

phase wavelet of a given -utocorrelation function. Futhermore, the

*Least squares in the sense that Sjiis minimized
where b(i.) has power spectrum if (w).
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computation is quite easy because of the recurrence relation. It is the

most efficient method known to the author who has computed 500 terms

of the minimum phase wavelet in about a minute on an IBM 7090 com-

puting machine.

D. A Comment on Autoregressive vs Moving Average Reprtsentations

A question arises whether it is more efficient to characterize

a stochastic process by the first n terms in its "autoregressive operator"

or by the first n terms of its "moving average operator. " What is meant

by this is the following: Usually filtering is thought of in terms of

convolving filter coefficients t with a data series. This might be called

"moving weighted averages" or more commonly, "moving averages.

This is equivalent to multiplying the Fourier transform of the data

by that of the filter. Substituting z 41 it is equivalent to multiply-

ing z-transform polynomials which convolves their coefficients.

Filtering could be done in another way called "autoregression." Instead

of multiplying the data polynomial by b(z) one divides it by the poly-

nomial a(z). This is called "feedback" filtering for reasons which

should be apparent to anyone who has ever divided polynomials by the

method of synthetic division (see Lanczos 1956).

By "efficiency" we mean the following: suppose we want a

, •bot -V
filter to represent Vow) and it is easy for us to compute bothl and b

quite accurately; in fact, we wish to use many fewer terms than we can

compute. Which characterizes T() more accurately for small p,

the moving average approximation +e 4. b, " *%•" 'N. or the
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autoregression approximation l/(ao+a, z+.. .+apzp) ? Whittle (in

press) observes that the autoregressive coefficients seem more

efficient and suggests that the reason is that for the series he deals

with (economic), autoregression is a more realistic physical model.

The author has also observed that the autoregressive coefficients

seem more efficient in geophysical time series, but suggests a different

reason. When we digitize continuous functions we usually digitize

at a rate high enough to avoid appreciable frequency fold over. A

typical spectrum looks like

The inverse spectrum looks like Ir

Since the inverse spectrum tends to have much more band- W

width, its wavelet tends to be shorter. This would indicate that when

these conditions apply a filter using feedback can do a better job for

the number of components than a filter which doesn't.



27

III Generalized Wave Shaper with Noise

A. Derivation of Normal Equations

Here we imagine the following model of a physical

system to apply

Physical System
<whi~t •" •ealiilttrr infor~matin•' •

L .hite light' 'Il noise

n_. .- . . . . - . _ _ _- - _ - .

constructed

filter

We want to design a filter to operate on the output of the physical

system to give us some preferred output. One set of formulas will

enable us to handle the following problems.

Problem 1. Given the information wavelet bk, the power of the infor-

mation9 and the power spectrum of the noise, convert each information

wavelet bk which comes out of the system to some other waveform dk.

For example we may be converting a long drawn out function bk into a

nice short one like a spike or a minimum phase wavelet. Of course, we

do not want the filter to respond very much to noise.

Problem 2. Given the information power spectrum and the noise power
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spectrum design a filter so that just the information comes out as

uncorrupted as possible. The information might be allowed to come out

with some time delay. On the other hand we might want to predict the

information before it comes out of the physical system. To see that

prediction is a reasonable thing to do, consideri an extreme case where

noise is absent, the linear filter bk "rings" for a long while, and the

information white light series consists of impulses widely spaced in

time. Of course we cannot predict the onset of a ring, but once a

ring starts we can easily predict the rest of it.

Problem 2 was treated by LeVinson and Problem I was solved

by the author in connection with some geophysical problems. They

are very little different. It will be seen that Problem 2 is a special

case of Problem 1 so we begin with Problem I and specialize the

results later.

Let b be the signal wavelet of length n+l.

Let 0. be the optimum filter of length m+l.

Let d be the desired convolution of a and b of length n+m+l.

Let 14 be any noise wavelet.

Let be a white light series which is convolved with u to give a

statistical model of the noise process.

LetM be a white light series of signal wavelet (b) arrival times.

Let * denote convolution.

The input to the filter is the signal plus noise, i.e., (b•*•÷4ttj ).

The actual output will be this convolved with the filter, i.e. (b*C 6* j )*a.
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The desired output is the wavelet d, occurring every time a signal

wavelet arrives, i.e., S * . The expected sum squared error

is defined as: expected sum squared error = expectation of

(actual output-desired output)Z

Since convolution is associative .and commutative it is valid

and will be convenient to drop all asterisks in the expansion of the

above 6quare.

= -E[(ba''9..(.sliV'+) (dg)2" •LI',"I•(//f••••/€ (Ill-i)a

By taking the expectation inside, it is seen that the lasttwo

terms depend on E(!AI ). We will assume this to be zero. This

means that the signal wavelets arrive at times which are uncorrelated

with the noise wavelets.

We recollect the remaining terms.

= (ba. )LE 'ua)3E ) M(L)-3)

From here on the derivation will algebraically resemble that of

the spiking filter. It is convenient to rewrite these convolutions in

subscript summation notation, i. e.

-*L4 -

(~-d)' -4JA)(b. . 114

-- t~
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Since we hooe to minimize the expected sum squared error we

will take its derivative with respect to each of the independent variables

ai and set each one equal to zero. Hence

This can be expressed in more compact form

(In-6)

having noticed that R and W thus defined are autocorrelation matrices

or Toeplitz matrices. The expression simplifies to:

.-[,. Mg-L .~ (11-7)

where is the hronecker dolt.

jUtilizing the symmetry of the quantities in the left hand

square brackets we can write:

F_ ,,)R,., E ÷FC'v .]•'6A-, JA• ,111-8,
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These equations can easily be rewritten as a matrix
equation in the same way as with the spiking filters.

If the desired output dk were just the signal bk
possibly with some lag or some negative lag (prediction)

then the right hand side no longer contains the waveform

bk but only its autocorrelation. This would be the

specialization to Levinson's problem.

We now give some examples writing equation (il-8)
in matrix form.,

Example 1 The signal waveform bk - (2,1). The signal

arrives with a frequency which gives it an average power

The noise is white and has unit power. The filter
should have 3 terms. The desired output is a spike after

unit delay, d - (0,1,0,0). The normel equations become

0 0 0
[___ 44o.$

Example 2 Like example 1 except the desired output is
the same as the signal input with no delay. The normal
equations are like example 1 except the right hand side

becomes the column vector (5,0)T.

Example 3 Like example 2 except that the signal should
be predicted by one time unit. The normal equations are

like example 1 except the right hand side because the

column vector (2,0,0)T.

IV "atched Filter

Suppose one is given an autocorrelation function of
a noise process and also A signal wavelet. It is desired

to detect the arrival of the signal wavelets in the pre-
sence of the noise. The method to be used is to filter
the incoming mixture of signal and noise and then say that
signals arrive where there are maximums in the output.



32

How should the filter be designed? If the noise were white

and the filter memory wavelet had unit energy, then the

power output of the filter with noise as input would be

unaffected by the frequency characteristics of the filter.

Then the filter need concern itself only with the signal.

Thus the introductory example (Section I, no. 4) gives

the whole story when the noise is white. The result is

simply that the signal filter coefficients are just the

time reverse of the wavelet and the actual filtering

operation then amounts to crosacorrelation of the signal

wavialet with the incoming data. If the noise is not white

we must do something a bit more complicated.

Using the same notation as the previous section, the

poweri output of the filter with no4.se input will be the

quadratic form E.- ) We can choose the magni-
fication constant of the filter to be such that this power

is unity. This leads to the constraint

For simplicity we choose to make the filter have

the same length as the signal wavelet and we choose to

have the maximum output come when the wavelet is exactly

in the middle of the filter# i.e., the nth lag of the

convolution where both l andl have length n. Thus we

maximize

(sum on i)

subject to the constraint equation (IV-l). Using Lagrange

multipliers one maximizes

madx [ XE (C) U £ (zv-2)



33

We have diffetentiated terms exactly like this in previous

sections. Letting tr represent the time reverse of the
signal wavelet and U represent the noise autocorrelation

matrix, we write the result

-0 U, + aEI)ua (1 -3)

solving tot r we get

= U.0 ;, Ll (iv-14)

We can usually ignore 2 )X B(f) since it Just amounts
to a magnification factor in the filter.

In practice one may prefer not to invert the matrix
in (IV-4) or solve the simultaneous set (IV-3) since there
is an easy way around it. One might simply prefilter the
data to whiten the noise and then filter with br. The

results would be similar1 the difference arising from end
effects.

More Is known about the matched filter. Suppose one
wants, to choose a threshold value for the output and

annoihce "signal" whenever the threshold is exceeded and
"no-signal" when it is not. Then one would like to maximize

the probability of guessing correctly. It can be shown that
if the noise Is gaussian, then the matched filter and pro-
per choice of threshold will maximize this probability.

V. Maximum Energy Sum Filter

Consider the following physical problem. A trans-
ient signal waveform is sent through a dispersive media.
The media is such that it may badly disperse the wave
without altering its spectral content a great deal. We
know what spectrum to expect of the signal and we know the

spectrum of the ambient noise. We would like to design an
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apparatus or procedure to enable us to make a best guess
as to when the signal arrive@. The matched filter Is not

the answer because we do not know the exact signal shape,
only its spectrum. The spiking'filter is not appropriate
for the same reason. The Wiener-Levinson filter tries to

make the output look like the signal input. In this case
we don't even know what the input waveform should be, we
would Just like to try to decide approximately when it

arrives.

A solution to this problem is to design a filter
which puts out lots of energy when the signal comes in
and minimum power when only noise comes in. Thus our
decision would be based on a system like the following:

We would search for the time tm when the output was
maximum and then we would say that signal arrived between

time tm and time tm-T.
Taking this model then, we seek to maximize

X -L enerM output of filter due to siSnal in interval T
expected power output due to noise

Notice the similarity of this problem to introductory
example 4. It will be seen that it turns out to be exactly
the same if the noise is white.

Since we are Interested In a computer application,

are discrete In time, and spectra which whose autocorrelations

are of finite time duration.

LI
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Using the finite aitocorrelations of the signal and
noise we define two wavelets bit a signal wavelet, and uji
a noise wavelet. This can be done be the procedures dds-
cribed earlier. These two wavelets may have different
phase spectra than those of our physical problem, but they
will have the correct autocorrelation. Thus we begin with

the definitions used earlier:

-a "ideal" filter coefficients (a. - 0 if 14 0 or i>M)

bi = signal wavelet (bI - O0f ieO or itN)
ut - noise wavelet (ui - 0 if i•o or i>N)

-= white light series associated with noise process
ihas variance 1.

We use subscript summation notation; the expression

12j b.-

has an implied summation over all values of the repeated
index J, j goes from minus to plus infinity. Thus the
given expression is a vector with free Index k and is the
complete transient convolution of a and b.

Expression (V-l) for j\ with this convention now
becomes

Aix-j4 (V-2)

We notice that a quantity like bk-jbki is the
autocorrelation matrix Bij of the signal bi and denoting
likewise UI-. = U .. as the autocorrelation ratrix of ui,

the expression (V-2) becomes

(40.11. 4s" Ali.N (V-3)
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To try to maximize this ratio, we take its partial
derivatives with respect to each of the independent variables
a and set them equal to zero.

Multiplying by (Umna&,,a) we get

4, i

The derivative operations are the same in each term,
working only with the first we get

........... _ __=.a d

=: ~ . ' a • -6)

wherefijis the Kronecker delta. Now utilizing the
symmetry of Bi.j and the fact that I and J are dunmn vari-
ables, this becomes

A y tseu neX (V-6)

Applying this result in equation (V-5), we obtain

o ý, (V-7)
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This is the generalized eigenvalue problem. Further-
more# since B and U are positive definite*, this problem
is known to have N distinct elgenvector solutions for the
at associated with esigenvalues X The eigenvalues
must be real and positive. Assuming that the eigenvalues
are distinct we select for our solution a. that elgenvector
which Is associated with the maximum eigenvalue. We note
that sigenveoctors are determined only to within a scale
factor. This corresponds to the physical fact that the
energy power ratio (V-l) will not depend on the amplifica-
tion of the filter.

Looking back to equation (V-2), we see that the numer-
ator is the energy in the complete transient convolution
of ai and bi, and denominator is likewise for a. and ui.

The energy in the convolution of two transients is well
known to be the Integral of the product of their energy
density spectra. Therefore, If we were able to find
another wavelet ai which had the same amplitude spectrum
as ai, we would have another solution to our maximization
problem.

From the z-transfor' analysis described in Section
II, we know that many finite wavelets may have the same
spectra. These different wavelets are obtained (by a
method due to Wold and also FPJer) in the following way:
1) Compute the autocorrelation of the given wavelet.
2) Factor its z-transform. 3) Its zeros must occur in
pairs, specifically if Zi is a zero, then l/2•" is a zero.
Select either one from each pair and form (Z-Zi)(Z-Z2 )(Z-Z 3 ).
This is the z-transf or of a wavelet with the same auto-
correlation as the given wavelet. 4) Normally there are

2 n possible different wavelets. By the reasoning of the
preceding paragraph, these should all be solutions of our
maximization problem.

This is an apparent contradiction to the fact that
the eigenvalue problem (V-7) is known to possess a unique
MTo see that B is positive definite recall that IM is a

quadratig for. representing the energy of output when tie
wavelet i goes into the fiter I. Clearly this energy Is
positive for any real values of a. This means that B is
positive definite.
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sigenveotor solution• aI for the maximum elgenvaluesi

The contradiction is resolved if and only if all of the zeros

of the s-transform of each solution eigenvector lie on the

unit circle. Then the zeros st equal their inverse conju-

gates i.e.

and the 2n different selections of one from each of the n

pairs of zeros all generate the same wavelet.

There is a curious consequence of the fact that the
zeros of the a-transform of this filter must be on the unit
circle. It is that the eigenvectors must be either symmetric

or antisyimetric (for example (2,3,2) or (4,0,-4) respec-

tively). Whether it is symmetric or antisymwetric depends

upon whether there are an even or an odd number of zeros

at the point Z-1.

This is a simple consequence of the fact that the
elgenvectors are real, and any roots of the z-transform
which are complex must occur in conjugate pairs. By the

main theorem, they must also lie on the unit circle. For
the root +e : we my then state

2.I5

and

H = c

Hence, the coefficients of the second order and the zero
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order term in z are identical for all Of and 19 and the

wavelet is symmetric. The same is evidently true for all

the complex roots. The net convolution of all these

symuuetrio wavelet@ is symimetric. Hence, the elgenveotor

would have to be symuetric if all the zeros were complex.

However, we also have the possibility of zeros at two

places on the real axis, -1, and +1. The -1 corresponds

to symmetric wavelet (1,1), and the +1 corresponds to the

antisymmetric wavelet (-1,1). Convolution by the first

leaves the elgenvector symmetric, but an odd number of con-

volutions by the second leave the eigenvector antisymmetric.

Numerical Ixample

Lot

b, (: , I

and

TX uo .1 -1 &:E ?-i]6
LT = 10 ;1 IV: -5- 1

solving

we get .

3 'a b' M~a.q I
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The eigen-values are distinct. The eigenvector

solutions for the maximu= and minimum eigen-values are seen

to be symetricD and the remaining eigen-value has an anti-

symnmetr!-i elgen-vector. The zeros of the z-transform of

the ei6:,-veotors are then computed and plotted:

The magnitudes of all the zeros are seen to be

equal to 1

B. Maximum Energ "Sum Filter tfrm Spectral Considerations

We consider the same problem of determining a filter

aI of finite length in discreet time which Is optimum in

the sense that It maximizes the ratio:



I (enerw output of filter due to ta-)
(expected power output due to noise)

This time we solve it in the frequency domain rather
than the time domain. Define the filter energy spectrum
as A((e), the signal energy spectrum as B(W ) and the
noise power spectrum as G(W ). Then the above ratio may
be writtens

If the maximum of this ratio is finite then it is

necessary that for perturbations in A(Q)) we will have I - 0.
Since A(W ) appears in both numerator and denominator

it is clear that a multiplicative scale factor In A(4))
will be unimportant, in other words we can choose the scale

factor as we wish. In fact, we can choose it so that the
integral in the demoninator is some constant, i.e.

Then the problem can be restated as maximizing the
numerator

(v.B.3)

subject to the constraint equation (2).
This is a classic problem in the calculus of varia-

tions (see for example Hildebrand, Methods of ApDlied Math,
section 2.6). The procedure is to maximize the quantity
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• e • A • B(64 13 Cop So +A (W•) G('w) so•

(V.B.4)

subject to no constraint. And then later X can be
determined by (2). X in called the Lagrange multiplier.

Thus we solve the problem

o - _)G m(v.3.5)

Since we are dealing with functions in discrete time,

the spectra in equation (5) will all be periodic with

period 2 (Nyquists). The spectra are also even functions

of W . Therefore, A, B, and G can always be written as

ALW~) =Oco*lot"C.,CdeflL

goal

G (to) + ; 9 C.Ont (V.B.6)
seat

Fourier cosine series whose coefficients, the Greek letters,

can be recognized as the autocorrelation. functions of the
respective tim functions. The limit on the summation for

A(C,) is finite because the filter a. was chosen to have

finite length and hence so must its autocorrelation. We

apply these forms to equation (5).

o(V.B.T)

II,
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The variation is intended to be over the correlation

function AL of the filter impulse response a.. The C

are not# however, allowed to be varied arbitrarily, they

must only be varied in such a way as to keep the energy

density A(W) positive for all W . In other words an

arbitrary selection of the numbers 0 j may not really be
an autocorrelation function. Therefore, we will express

the 0( in terms of the impulse response a1 and do the

variation in term of the ai instead, because any set of

numbers a1 is a valid impulse response. The expressions

relating otk and ai are:

0( 2 +a2 +a2 +0 e+a2
0  + +. • . •. + 2

M1 " aoal + aIa2 + a2 a 3  * .. + aN-laN

0(2 = aoa2 + ala3 + a2a4 + • * o + a.-2aN

-• (v.B.8)

ON m a oaN

Performing the variation merely amounts to writing j
the Euler equations In terms of the a1 , the ai being

completely independent variables. Our integral is of a

particularly simple form, thetefore, we can obtain greater

insight by performing the Integration directly. Then we

can set the variations (derivatives) with respect to the

a1 equal to zero.

The integrand is the pE'oduct of twO cosine seriese

Using the orthonorMality ot these cosines over the Interval

+ i to - equation (7) becomes on Integration

0 , (_).>%.)evvI1
api,%

* T~7+ 4
1J
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It is noteable that the formulas (9) no longer
contain the infinite sum which is in formula (7). This
important result will be referred to later. It means
that only N lags of the signal and noise autocorrelations
are needed for the solution, N+l being the length of the
impulse response of the filter a. which we are construct-

Ing.

We now differentiate the Ch in equation (8) with
respect to the independent variables aa. This may be
written:

•h _ aj + aj~

.1-n J+n

where 0 4JN

and ai O if i 0
a•_ 0 if I N

We-now insert this into formula (9) and reorder
terms according to increasing subscripts of a This

.1step, although it Is complicated amounts to straight-
forward symbol manipulation. The final result can be
written as the following matrix equation:

!* ..
* (V.B.ll)

Thus we are led to the same result as the time domain
considerations (v-7). One wonders whether there might
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be a useful connection here with the general theory of
eigenfunctions as there were useful results of connecting
least squares filters with the theory of orthogonal
polynomials.

It is possible and seems likely that some of the
statements about decision rules, maximum likelihood, etc.
which are made about matched filters in Gaussian noise
could also apply to the maximum energy sum filter*.
This is a topic which does not appear to have been inves-
tigated.

%This possibility was suggested to the author by both
Professor R. M. Hofstetter and Professor T. R. Madden.
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SECTION VI First Motion Spiking

A. Object and Motivation
The direction of first motion of the ground at a

seismic station has received considerable attention in
nuclear detection. The essential idea is that the first
motion resulting from an explosive blast should always
be upward and away from the epicenter while this would
probably not be true for more than half of the time for
naturally occurring seismic events. This criterion has
been shown to be a reasonable one for the Logan and

Blanca test shots for distances less than about 700 km
(Romney, 1959). The primary difficulty in considering
seismograms taken at greater distances was the reduced
signal-to-noise ratio further aggravated by the fact
that the first motion was in almost all cases smaller
than the immediately following oscillations. On some of
the seismograms taken at greater distances the first
motion appeared to be in the wrong direction despite a
fairly strong signal-to-noise ratio. The motivation of
the experiment to be discussed is that perhaps the oscilla-
tions immediately following the first motion also contain
information about the polarity of the first motion, but
contain this information in some latent way. This idea
is not new, but no effective method has yet been applied
to extract this information.

A mathematical technique for extracting this type
of information is the spiking filter.

B. Method and Philosophy of the Experiment
First a wavelet, the first motion and several sub-

sequent wiggles, is selected from a relatively near-shot,
low-noise, seismogram. Then a filter is designed such
that with the wavelet as input, it will produce little
or no output before and while the wavelet Is entering the
filter, a large positive spike when the wavelet has fully
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entered the filter, and little or no output thereafter.

The filter in also designed to have little output when
naturally occurring microseisms are its only input. In
practically all cases, a filter cannot be designed to do

these simultaneous tasks exactly, but the one designed

does them in the least-squared-error sense. That the
ultimate error will be sufficiently small for practical

purposes must be tested computationally.

The filter is then applied to a seismogram with
a poorer signal-to-noise ratio which may be at a differ-

ent orientation to the seismic event and at a greater

distance. If the filtered seismogram consists of low

level, noise preceding the abrupt arrival of a spike of
positive polarity we might then infer that the direction

of first motion is the same at the second station as it
was at the first. If the impulse had negative polarity

we would infer that the second signal had undergone a

180* phase shift with respect to the first signal. If
no impulse showed clearly through the background noise,

we would infer that this experiment was not successful.

To be more precise, in least-squares fitting to
a positive impulse we are assigning a polarity to a
clear first arrival wavelet; then we produce a filter
which can be applied to wavelets from other seismograms

of the same event which assigns a polarity to each of

these.
Finally, we are in a position to examine the

possibility that the polarity is the same at all orien-
tations from the source. If it is, we infer that the

source has rotational symmetry and is probably not of

natural origin. If the polarity on the first clear

arrival wavelet is assigned according to the direction of
first motion, and if wiggles subsequent to the first
motion really do contain latent information about the

first motion, then the hypothesis tested by this experi-

ment is very similar to, although not exactly the same
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as, the hypothesis that the first motion caused by a
nuclear explosion must be up and away at all source orien-
tations. To point out this difference more clearly, con-
sider the seismograms mentioned earlier on which the first
motions appeared to be in the wrong direction. Possibly
the first motion was in the right direction and obscured
by the noise, but it might actually have been in the
wrong direction. Even if it was, its polarity as deter-
mined b7 the first few wiggles might have been the same
as that of other seismograms of the same nuclear event.

C. Choice of Parameters
Several of the seismic records from the Logan under-

ground nuclear explosion were picked by eye, that is, the
first motions were identified approximately and the first
3.5 to 4.0 seconds of the seismic trace were considered
to ýe,'the essence of the signal wavelet. The section was
then tapered smoothly to zero on each end. The exact
way in which this was done it depicted in Figure 1. Only
the shorter of the two wavelets shown (the bottom in each
frame) was used. The wavelet length, about 3.75 seconds,
was selected because it is long enough to include the

requisite "first few wiggles" but not so long as to make
the solution of the simultaneous equations excessively
time consuming. A sixty point inverse wavelet which is
three seconds in length at our standard digitization rate
requires about one minute of IBM 709 time to compute.

The choice of a method of tapering the ends of the
wavelet was rather arbitrary, It was motivated by two
considerations: 1) The time of the first motion arrival
could not be determined exactly, and to be sure that the
first motion arrival was Included, about 3/4 second of the
seismic trace before the apparent arrival was included in
the wavelet. Since It was also felt that the wiggles
nearest the first motion probably contain the most infor-
mation, wiggles further away were also tapered in amplitude.
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2) If the wavelet were Just extracted from the seismogram,

it would be likely that there would be strong discontin-
uities in both the function and its derivatives at these

ends. It would be undesirablb. if the spiking filter
turned out to be particularly sensitive to these artifi-
cially caused discontinuities; hence, they, too, were
removed by tapering.

To select the coefficients of the spiking filter,
the following quantity was minimized:

sum of square error -

(delta function minus the convolution of the filter
with the wavelet) 2

* 2(the convolution of the filter and the noise) 2

The noise referred to in this expression is the
microleismic noise which Just preceded the arrival of the

signal wavelet. The 2 in the second term on the right in

the above expression was selected on the basis of results
of earlier crude computational experiments. The choice
of the delay in the delta function in the first term on

the right in the above expression was made such that the
filter would be acting on all of the terms in the wavelet
at the time of the filter's spike output.

The length of the spiking filter was chosen to be
equal to the length of the wavelet, not because of theoret-
Ical necessity, but because it was thought, for various

reasons, to be a reasonable choice.

The choice of practically all of the parameters in
the above discussion is somewhat arbitrary. They were all

selected initially on intuitive grounds. Some have boon
more or less Justified by simnle couputational tests, others

remain to be investigated.

D. Results
As a check on the computations and a check that the
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sum-square-error would be small enough to make the scheme

useful, the spiking filter was applied to the seismogram

from which it was derived. This is presented in the upper

left and lower right frames on Figure 2 and Figure 3. It

is seen that the noise preceding the first motion is in

all cases reduced and that the first motion is condensed

to a neat spike, Just as it should be. The "hash" which

is near the beginning and end of some of the convolution

traces is the result of applying a filter onto the ends of

a finite segment of data.

The conclusion to be drawn from the first part of

the experiment is that a least squares error filter can be

determined with the resulting error small enough that it
will be useful in simultaneously reducing noise energy

and condensing a particular waveform into a spike.

The next part of the experiment was to apply these

spiking filters to other seismograms. The spikes still

seem to be present although they are almost down to the

level of the noise. This is shown in the lower left and

upper right frames in Figure 2 and Figure 3. In some

cases the noise before the first motion appears to have
increased after filtering. This is because all of the

traces on the figures were scaled to have a certain maxi-
mum amplitude amenable to scope display. Since the spike

was always smaller in cases when the spiking filter was

applied to other records, the resulting displays were

amplified. The spikes generated from the application
of spiking filters upon other seismograms are not clearly
distinguishable from the noise in all cases. The conclu-

sion to be drawn from this is that the first motion
wavelet loses much, but not all, of its character in going

from the station at 1800 ka to the station at 1900 km.

This must be qualified, however, for the loss of character

might not be quite as great as it would first appear; it

ahoUld be remembered that the wavelet as determined at one



station also includes the noise at that station, hence even

if there were no change in the wavelet at all during trans-

mission from one station to the next, there will be a

double corrupting effect in this computation due to the

different noise at the two stations which cannot be corn-

pletely eliminated.

F. Possible Modification to and Experimentation on this

Mathematical Technique

The operation of the spiking filter in this experi-

ment had the undesirable effect of increasing the high fre-

quency noise. As a result of this, the filtered data looks

much more spiky than the unfiltered data making it more

difficult to observe a true spike in the filtered data.

Heuristically the reasons for this are as follows. The

energy in the spectra of the signal wavelet and the noise

tends to be primarily at low frequencies. If we were

ignoring noise and considering an infinitely long inverse

wavelet, its spectrum would be Just the inverse of the

spectrum of the signal wavelet and in this case would con-

tain very high frequencies. Since the filter is also expected

to reject noise of low frequency, the result is a filter

which is very sensitive to high frequencies and hence high

frequency noise. An important conclusion of this experiment

is that something should also be done about high frequency

noise. The analysis suggests how to make the filter insen-

sitive to any type of noise of known autocorrelation.

Another approach is not to require an impulse to be the

output of the filter, but instead, some wider burst. Reason-

ing again from the limiting case of filters and signals of

Infinite extent, this would be advantageous because the pro-

duct of the spectra of the filter with that of the wavelet

must equal the spectra of the desired response. By desiring

a response of a wide burst Instead of a spike we may expect

to get a filter less sensitive to high frequency noise.
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0. NoMe Possible Applications to Nuclear Detection

One could try the following different, though similar
experiments:

1) On records taken at the same distance and at the

sam station try filters generated from a wavelet from one

nuclear event on a seismogram from another nuclear event.
2) On a record with a clear first motion, compute

the spiking filter and then convolve the whole record with

it, In search for later arrivals of the same waveform. (If

later arrivals are detected their time delays can be deter-

mined to the accuracy of the digitalisation sampling. Since

this is 1/10 of a second, it may lead to improvements in

depth determination accuracies.)

SECTION VII Prediction Error Experiment

I. Philosophy

Nicroseilsmc noise can be predicted. For example,

it was found that given past values on our noise seismograms,
one can "oil]y predict 211•0 of asecond into the future
with an error in power of less than 5%. Suppose we formo a

new signal by subtracting the predicted seismogram from the

actual seismogran-. This new signal io called the prediction
error signal. The amplitude of the prediction error signal

is expected to be small. If, however, at some time in the
microseismic trace a real signal arrives, it cannot, of

course, be predicted from the noise. Hence, at that time

the prediction error signal should suddenly attain a large

amplitude. For example, during the digitization of our

seismograms one of the timing marks was accidentally traced.
Naturally the timing mark could not be predicted on the
basis of the noise which preceded it. The result was a

large prediction error at that time. This is depicted in

Figure 1.

The mathematical theory of predicting stationary time
series at unit prediction distance also shows that the pre-

diction error of a pure noise signal will be a white-light
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series. The arrival of a signal, if it has a different

speotrum than the noise, will result in non-white series.
Thus a person attempting to find a seismic signal

arrival by examining the prediction error will look for:

1) large increase in amplitude
2) change in white character of trace.

There is another peculiarity of the prediction error

signal. Its power spectrum is independent of the seismometer
and recordinr system. This is true both before and after
P wave arrival. Before, the spectrum is simply white. After,

it is a function only of earth motion power spectra.
Another property of the prediction error trace is that

the ratio of power after to power before signal arrival must
be anrimprovement from the original seismogram.

All of these properties w'.ll now be derived.

II. Mathematical Derivation

The concept of prediction is treated in greater
detail elsewhere (Robinson 1954). The formulas are briefly

derived here in an heuristic manner.
First we make the following definitions. Let

a be the given stationary series

w be the one sided wavelet with the same

spectrum as a, of length n
x be the white light series which when

convolved with w gives s
v be the wavelet which is inverse to w of

length m

d be the predicted s at d time intervals
in the future

a or n or both may be infinite.

Let negative subscripts refer to the past, the zero sub-

script to the present, and positive subscripts refer to

the future. Let "*" denote convolution. The white light
series x can be generated for all past time, up to and
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including the present instant by the convolution o: a with
V; i.e,0

The white light series corresponds to arrival times
of the wavelet w. The situation in depicted In the sketch

below.

-.~ ~ ~ WV 16"- " - T_- O'-, - _

PAST -•-" . ....

W1H|TS U*HT SPIKES Now Timis 'W Now+

To find the predicted value of the series at the

time (now+d) we sum up the effect of all wavelets arriving

1h the past. Those wavelets which may arrive between now

and the time we are predicting will contribute to the

error of the prediction.

Referring to the sketch above, our prediction now

Pos for the value of s at the future time imd is thus

written:

Pe6i =X.WL + X. ,6&i* + +.ah + ..

Mc-A

M~ore g~enerally, the prediction p• (d) for the value



o@ the series a3+d at time J+d is written:

We writ, this symbolically an

where wT is the wavelet w, truncated of Its first d terms.
Utilizing (1) and the commutivity of convolutions we get

and we can identify yewt as the predicting filter.
The prediction error ea is defined as

e (d) - actual series - prediction of series.

It is a function of the prediction distance d. We
will now show that if dml, the operator which generates

e j(1) from sa takes on a particularly simple form, and e3 (l)
must be a white light series.

Denoting z-traneform by capital letters, the z-trans-
form of the truncation of wt corresponding to d-1 is

tl(x.), we

The z-transform of the predicting filter in thenvm (Z W ()- we)

The z-transform of the prediction error filter is

Juwt

j AWO)+v



But w and v are inverses and also, wo - I/vo, hence

the z-transform of the prediction error filter Is

Hence, the prediction error filter is Just the
inverse wavelet, scaled so that the first term of the

filter is +1. Since the prediction error filter is the

inverse to the wavelet of the stationary seriesp it must
whiten the series.

What happens to the spectrum if a signal arrives
somewhere on the noise record? Letting S denote spectrum,

the condition that the noise be whitened Is:

S (earth noise) B (seism. system) S (prediction error filter) - 1

The spectrum of our final graph is then:

S(graph) - 8 (earth signal + noise) S (seism. system) S (pre-
diction error filter)

Combining the above two exr:ps&u na we get:

S(gph) S (earth i&tal + noise)
S (earth ,;Dise)

which is Independnnt of t•he r'ansfer function of the seismo-

graph.

This derivation contains some hidden mathematical
assumptions which should be valid in any real case.

(Seismograph system is linear and dissipative. Ground motion
satisfies Paley-Wiener criterion.)

The proof that the prediction error filter must

improve the signal-to-noise ratio is omitted. It is based
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on the fact that the prediction filter can be derived from

the point of view of minimizing the variance of the difference

between the predicted and actual noise, and that this vari-

ance must be higher for any signal with autocorrelation

different from that of the noise.

III. Computational Method
One knows approximately the signal first arrival time

on all of our seismograms. In some cases it is directly

observable, in others one needs to use travel-time curves,

The autocorrelation of the noise before the first motion is

first computed. Prom this the inverse wavelet is computed
by the method described in our previous report Appendix F

part III. This is a least Aquares method. The length of
this ftilter was chosen to be 70 points. This is near the

limit of computational feasability of least square proce-

dures at the present time. A method for computing longer
prediction operators was programmed but not used because in

most cases we did not have a very great amount of data

digitized before the first motion and also because exper-

ience has shown that great increases in operator length do
not improve predictability proportionately. Our data has

•0O second digitization intervals, however, we have dis-
covered that our seismograms have little energy in the

spectrum above 5 cps. Therefore, only alternate digitized

points were used. The resulting prediction operator length
Is 7 seconds.

The finiteness of this operator caused our actual
output to deviate from the theoretical output in the follow-

ing way: The operator cannot successfully use noise with
wavelength of the order of 7 seconds and longer in predic-
tion, since it is only 7 seconds in length. Reference to

graphs in our previous reports indicates that % to 20%
of the power in the spectrum may fall within this range.

Although this low frequency is apparent in some of the

A eI~. aa&L.~
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prediction error traces* the visual quality of the records
is not impaired, however, due to the very lowness of this
frequency.

IV. Results
Results are presented in the form of the following.

figures. The results are good in every case and sometimes
quite remarkable.
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Figure VII-6 The p-wave is clearly located at 425
seconds. This is an example where all but perhaps a
skilled seismologist would not be able to pick p from
the original record, but where it is quite clear from the
prediction error record.
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SECTION VIII: Travelling Auto-Spectra of Nuclear Shot
Seismograms

A travelling spectrum is a succession of spectral
estimates of a time function taken at successive time
intervals. Thus it is a function of both frequency and
time. This concept, although is is a mathematical
amalgam, may be useful in the analysis of non-stationary
time series where the successive spectral estimates change
in some physically meaningful way.

It was not certain what could be learned by taking
the travelling spectra of seismograms of p- and s-waves
from nuclear shots since simple theory predicts no dis-
persioh for these phases in a homogeneous isotropic
medium. But considerable change of waveform (i.e. dis-
persion) is known to occur in the real earth. Therefore,
although one has no detailed ideas of what information
it might be able to extract in regard to nuclear detec-
tion, it was thought there might be value in computing
the travelling spectra, especially since by utilizing.a
special technique (Simpson et al., 1961a, Appendix J)
it was possible to compute a travelling 24-point spectrum
of a typical seismogram on the IBM 709 in the amount of
time it takes to read this sentence. In fact, it is too
easy to use the computer to generate many more numbers
and curves than are readily interpretable. For the first
investigation travelling spectra was computed for all
the digitized data which was available.

Since the travelling spectrum is a function of two
parameters, frequency and time, and since our program can
compute values almost as fast as they can be printed,
there was a significant problem in data presentation.
I took two approaches. The first was to print twelve
numbers per line of printed page, these being the spectral
amplitude estimates scaled to a maximum of 5, rounded to
an integer, and then taken to the 10th power. The result
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is intended to resemble 13 bar graphs running down the page,
representing spectral estimates at 13 frequencies as a

function of time. Time of p-wave and s-wave arrival is
indicated. The second approach to the data presentation
problem is to make these bar graphs on the scope. This
allows finer presentation of amplitude.

A selected few or the results are presented in the

figures. Some things are notable. On Figure 11-3-1 is
presented the travelling spectra from two nuclear shots
over almost identical paths. The spectra are similar,
but far from being identical. On Figure 11-3-5 the s-wave
arrival is apparent on the travelling spectra as an
increase in high-frequency energy. On Figure 11-3-6 a phase
arrival is noted in which there appears to be some disper-
sion. This phase has not yet been identified.
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SECTION IX Filtering for Signal-to-Noise Improvement

Abstract
A filter' is derived which can remarkably increase

the signal-to-noise energy ratio on seismic records. In
the examples considered the ratio was increased by
factors of up to about 20. The construction Df this

filter is based on assumptions about signal spectra and
noise spectra. The filter distortion, however, is severe
and the method is not expected to be useful when applied

to first motion studies. Thus the method should be use-
ful for determining the existence of very weak arrivals.
A possible application of this is in the detection of
Leet'S (Leet 1962) "lonesome P" phase. This application
was tried but results were inconclusive due to inadequate

relevant digitized data. Other experiments, perhaps
less directly relevant to nuclear detection, gave excellent
results.

I. Introduction
In the previous subsection we have seen filtered

seismograms in which the signal-to-noise ratio was sub-
stantially enhanced. The filter in that subsection was
based only upon a knowledge of the noise power spectrum.

In many geophysical problems, some knowledge of the signal
may reasonably be assumed. One might make the relatively
weak assumption that the energy-density spectrum of the
signal is known, or one could make the stronger assumption
that both amplitude and phase spectrum (and thus the wave-
form) were known. It is advantageous to make the strong-
est realistic assumption possible because-then the solution
filters are "tailor-made" to the problem. It is dangerous,
however, to make strong assumptions which are not Justi-
fied, since we may not know how sensitive our solutions
will be to small deviation from the assumptions. On the
other hand, any sensible assumption is probably good if
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the solution is not particularly sensitive to deviations
from the assumption.

II. Feasibility Experiment
In the examples oonLidered in this subsection we

assume knowledge only of the noise spectrum and the signal
spectrum although the method which will be applied is

generally applicable to the stronger assumption of noise
spectrum and signal waveform. The mathematical method
is to take our assumed noise and signal spectra and
construct a filter which is optimum in the Wiener sense.
The details of the method are explicitly developed in
Appendices B and C. The general idea is that the square
error will be minimized, error being both 1) filter out-
put when the only input is noise and 2) filter output
other than signal when only signal is input. It was
further assumed that at a given seismic receiver noise
is present most of the time and signal is by comparison
rarely present.

One might wonder how sensitive this filter is to
small perturbations in the assumed signal and noise spectra.
The answer is that it depends upon the spectra. This can
be seen by examining Figure (]2-1) in which is displayed
the spectra from one of the test cases. The filter, as
might be expected, has greatest spectral components in
the regions of high signal-to-noise ratio. It can be
noted that high ratios at frequencies where both signal
and noise have low energies do not strongly affect the
filter. Thus the fIlter seems to have a sensible spectrum
and although it is peaked rather sharply, it does not
appear that any minor alteration in assumed signal and
noise spectra would cause major alterations in the filter
spectra.

The particular filter used in the examples tries to
reproduce the signal efter a 3 second delay. To facilitate
comparison, however, the time scale was relabled in such
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a way as to remove the delay. Distortion of the signal

(caused by trying to suppress noise) now may cause

precursers to the signal as soon as 3 seconds early. In
fact, the filter will have considerable distortion since
we have set up the problem so that the filter should
suppress noise and then we have also said that noise will
be the most frequent input. Thus the filter will try
very hard to suppress noise, and much signal distortion
will almost always result. For this reason the filter is
not a good one for first motion studies.

This part of the experiment is based on the follow-
ing assumptions:

1) The spectrum of a p-wave signal from a nuclear
blast arriving on the LEFT-RIGHT component will be similar
to that on the more clearly observable UP component.

2) The microseisms noise spectrum does not change

significantly from the minute before to the minute after

a p-arrival.

The results in the particular examples studied which
are displayed in Figures (I2-2 to ..-6) indicate that
these assumptions cannot be too bad. In them the signal
spectrum was determined from the first 25 seconds of p-wave
on the vertical component. The noise spectrum is computed
from the horizontal component before the p-arrival time.
(This time is known from the vertical component.)

III Detection Experiment
In the prediction error experiment (SectionM of

this report) one of the prediction error filters increased

the signal-to-noise energy ratio to such an extent that

the p-wave was easily recognizable where it had previously

required a good deal of imagination to recognize (see

Figure 1=-6). Since this phase is what Leet calls

"lonesome-p" (more than 2500 kilometers distant and no

observable s-waves or surface waves) and its presence may
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be quite significant for nuclear detection we considered
the general problem of trying to increase our ability to
detect Just the existence of a signal in a very high
relative noise level. This led to an elaborate mathe-
matical scheme written up in SECTION V. The final
equations would be difficult to program satisfactorily
using standard methods and it was felt that further
theoretical Study would lead to simplifications both
theoretically and computationally; therefore, its use is
not included.

The syametrical Wiener-Levinson filter,is quite
similar in concept and in simple numerical examples gave
similar numerical answers. Furthermore, one feels that
the Wtener-Levinson symmetrical filter should be able to
do a better Job of increasing the signal-to-noise ratio
than the prediction error filter because the former is
derived from both signal and noise information whereas the
latter is derived only from noise information.

The essential assumption in this experiment is that
we have some means of getting knowledge of the lonesome-p
spectrum. The various possible means of getting this
knowledge represents a big study in itself. In order to
proceed, we make the following assumption: the spectrum
will not change radically from Logan to Blanca for similar
distances and similar paths. Since Blanca was a stronger
blast than Logan it was hoped that we would be able to
find A distance at which the p-phase could be observed on
Blanca, but neon Logan. Then we would compute spectrum
of the p-phase on Blanca and the spectrum of the noise
before Logan and construct a filter. This filter would
then be applied to Logan in the hopes of observing p on

Logan. Unfortunately, our available digitized data did
not allow even this experiment. The closest approximation
was Blanca 2208 km UP and Logan 2111 km UP. Unfortunately,
1) this is nearer than the distances Leet specified for
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lonesome-p (2500 km on out), 2) the distances may be

different enough to cause a change in the spectrum, 3) the
phase is clearly evident on the Logan record even without
any filtering. The best we can hope for is that we can
show improvement in the signal-to-noise ratio. Unfortun-
ately, the amount of noise digitized before the signal
arriral was so small as the make unrealistic an estimate
of the improvement ratio. Nevertheless, the experiment
was performed and is depicted in Figure (f--7).
Better data was clearly needed.

IV Conclusion
Given noise spectra and signal spectra which are

as different from each other as is typical with microseisms
and p-waves, we can construct a filter which substantially
improves signal-to-noise energy ratio. Because of distor-
tion, this filter is not useful if a detailed study of the
waveform is to be made.
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